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Abstract

The existing approaches for generating house price indexes (HPIs) are almost exclusively found in the realm
of traditional statistical modeling. This paper offers a new approach using a machine learning model class —
random forests — combined with a model-agnostic interpretability method — partial dependency — to derive
an HPI. After providing an example of this approach, I then test the Interpretable Random Forest (IRF)
against indexes derived from repeat sales and hedonic price models. Using data from the City of Seattle, this
comparison suggests that the IRF is competitive (and occasionally superior to) popular existing methods

across measures of accuracy, volatility and revision at both a city-wide and a neighborhood scale.

Introduction

Traditionally, house price indexes have been derived from highly interpretable (statistical) modeling approaches
such as regression models. Both the repeat sales and the hedonic approach — the two most commonly published
approaches (Hill 2012; MacGuire et al 2013) — are regression-based models. Standard statistical models are a
good fit for this task as the coefficient estimates are easily convertible into standardized price indexes. House
price index generation is viewed as an inferential endeavor in which the attribution of the effects of time on
market movements is sought, rather than a pure prediction problem. As a result, many of the rapidly growing
set of machine learning algorithms — e.g. support vector machines, random forests and neural networks —
have not been used in the production of price indexes due to the fact that they do not directly and/or easily
attribute price impacts to the variables or features in the model. However, with the rise of interpretability
methods (Ribiero et al. 2016; Doshi-Velez and Kim 2017; Molnar 2019), these ‘black-box’ models can be

made explainable and suitable for a more diverse set of tasks.

This paper highlights the use of partial dependence — a model-agnostic interpretability method (Molnar 2019)
— to generate house price indexes from a machine learning and inherently non-interpretable model. One of

the major appeals of using a model-agnostic approach is that any underlying model class could be used



on the data. In this work I use a random forest, one of the more common and intuitive machine learning
models. However, this choice of model class is only for convenience, as a neural network, for example, could
just as easily have been used. Along with an explanation of the method and examples, the results from the
application of a model-agnostic interpretability method are compared to the more traditional repeat sales
and hedonic model approaches. The findings suggest that the interpretable random forest (IRF) appraoch to
house price generation is competitive with (and occasionally prefereable to) the standard approaches across

measure of accuracy, volatility and revision on a set of data from the city of Seattle.

The remainder of this work is organized as follows: Section two provides a brief literature review focused on
applying machine learning approaches to the task of house price indexing. I then discuss the interpretable
random forest (IRF) approach to creating a house price index and provide details using a dataset from the
hpiR R package: Seattle, WA homes sales in the 2010 through 2016 period. In section four, the interpretable
random forest method is compared to more traditional models across three metrics — accuracy, volatility and

revision. Finally, I conclude with a discussion of the results and the reproducility of this work.

Previous Work

Since the seminal Bailey et al. (1963) study there has been considerable and sustained research effort put
into comparing and improving competing methods for generating house price indexes. Published work in this
sub-field of housing economics is generally focused on one or more of four aims: 1) Comparison of model
differences (Case et al 1991; Crone & Voith 1992; Meese and Wallace 1997; Nagaraja et al 2014; Bourassa
et al 2016); 2) Identification and correction of estimation issues or problems (Abraham & Schauman 1991;
Haurin & Henderschott 1991; Clapp et al 1992; Case et al 1997; Steele & Goy 1997; Gatzlaff & Haurin 1997,
1998; Munneke & Slade 2000); 3) Creation of local or submarket indexes (Goodman 1978; Hill et al 1997;
Gunterman et al 2016; Bogin et al 2019); and/or 4) Development of a new model or estimator (Case &
Quigley 1991; Quigley 1995; Hill et al 1997; Englund et al. 1998, McMillen 2012; Bokhari & Geltner 2012;
Bourassa et al 2016).

This work develops and tests a framework for using random forest models combined with an interpretability
layer to create a house price index. The review of literature focuses on these two novel components of the
work. Readers interested in a broader coverage of approaches to and issues with existing house price index

methods are directed to the “Handbook on Residential Property Prices Indices”(Eurostat 2013).



Random Forests

The term ‘machine learning’ often conjures the pejorative term ‘black box’. Or rather, a model for which
predictions are given but for reasons unknown and, perhaps, unknowable, by humans. For use cases where a
predicted outcome or response, in itself is all that is required the ‘black box’-ness of a model or algorithm
may not be an issue (Molnar 2019). However, in cases where model biases need to be diagnosed and/or
individual feature or variable contributions are a key concern of the research or model application — such
as for constructing house price indexes — machine learning models need to be extended with interpretabilty

methods.

There are many options for the choice of machine learning model, though most all specific model classes
fall into four generalized classes: 1) logical model (decision trees); 2) linear and linear combinations of
trees or other features (random forests); 3) case-based reasoning (support vector machines); and 4) iterative
summarization (neural networks) (Rudin and Carlson 2019). This paper uses random forests (Breiman 2001;
Hastie et al 2008) as an example as they are a common modeling approach in the machine learning literature
and in industry. Random forests create a large set of many decision trees, each based on a random set of the
data. As each tree is grown, the partitions in the tree are limited to a random set of the variables (features)
in the data. This set of (decision) trees ‘grown’ via randomness makes a random forest. To make a prediction,
simply evaluate the subject instance (house in a real estate valuation context) in each tree — which gives
a predicted value — and then combine all of these evaluations and take the mean (or some other measure
of central tendency). The choice of the number of trees to use and the number of random variables to be

considered at each partition step are (hyper) parameters that must be determined by the modeler.

Random forests, essentially bootstrapped submarketing routines, also have a natural link to real estate
valuation via the selection of small subsets of like homes to drive predictions. Interestingly, random forests
have been little used in academic real estate studies (see Mayer et al 2019 for an exception) and not at all in
house price index creation (to the knowledge of the author). This lack of use can likely be explained by the
fact that random forests are a ‘black box’ in that they do not directly create coefficient estimates as more
traditional statistical models do and, therefore, do not offer a direct approach to create price indexes. A
random forest model by itself will provide a predicted value but no direct explanation of how that prediction

was generated. In short, they are not inherently interpretable.

Interpretability Methods

As the use of machine learning models has grown, so too have methods to help increase the interpretability of



these approaches (Slack et al 2019). One such set of enhancements are termed ‘model-agnostic interpretability
methods’ (Molnar 2019). Model agnostic interpretability methods are post-hoc models that can be applied to
any learner or model in order to provide a specific enhancement or extension in the overall interpretability of
the model. Model agnostic interpretability methods can fall into a number of types or classes, some of which

have varying aims. Some of the most common approaches are:

e Simulated or counter-factual scoring. In these approaches, machine learning models compare
scored (predicted) values of counter-factual observations across a given variable(s) while holding all
others constant. Individual conditional expectations (ICE) (Goldstein et al 2014) and partial dependence
(PD) (Friedman 2001) are standard examples of this approach. Accumulated local effects (ALE) can
also be used when extensive correlations exist in the independent variables of interest (Apley 2016).
Often a goal of these approaches is to understand the marginal contribution of one or more features

towards the predicted value.

o Game Theory (Shapley Values). A game theory or bargaining approach where players (variables
or features in the model) compete to determine the optimal payout (coefficients) for their contributions
to each observed price (Cohen et al 2005; Molner 2019). Shapley values, like counter-factual scoring,

seek to measure marginal contribution of specific features.

e Global and local surrogates. Surrogate interpretable models that roughly approximate a black
box model can provide human-interpretable explanations. These surrogate models can be global —
spanning all observations — or local — confined to a small subset of the data, such as location. The
locally interpretable model explanation (LIME) method proposed by Ribiero et al (2016b) is the most
widely known local surrogate approach. Local and global surrogates are usually used to more deeply

understand the prediction of one or a few individual instances.

e Feature importance via permutation. Judging the importance of a particular feature or variable
within a black box model can be estimated via a permutation method (Gregorutti et al 2017). This
approach works by estimating a baseline model with all variables as is. For each feature (variable),
permute or randomize the data for that feature and re-estimate the model. Do this for all features one
at a time and measure the relative degradation of model performance when each feature is randomized.
This provides a (relative) measure of which variables or features are the most important. Feature
importance measures are used to identify which features in the model provided the biggest (relative)

gains in model performance and aid in model specification tasks.

In this work, I use measures of individual conditional expectation (ICE) and partial dependence (PD) to



extract interpretable insights on real estate market behavior over time. I have chosen this approach for two
primary reasons. First, the ICE/PD approach - via counter-factual scoring across the variable of interest,
time — conceptually mimics the basic questions that drive real estate price indexes, namely: What would this
property/house have sold for across given intervals of time, had it sold repeated? In fact, this approach does
exactly that by simulating a home sale for a given property at every time period in the study (ICE) and then

combines those changes in price over time across all properties (PD).

Second, ICEs and PD are one of the easiest of the above methods to compute. It should be noted, partial
dependence calculations are known to be potentially biased when the variable of interest is highly correlated
with other independent variables (Molnar 2019). Most variables used in standard hedonic pricing models,
such as bedrooms, bathrooms and home size are often highly correlated. Fortunately, for the purposes of
house price index generation the variable of interest — time of sale — is generally highly orthogonal to other
control variables making partial dependence an acceptable approach. This assumption could be violated if
the quality or location of housing that transacts varies greatly over time. Practically though, this is only
likely to occur in a relatively small geographic area that experienced significant new construction sales. The

data in our empirical tests span a large, built-out urban municipality so this concern is minimized.

Partial dependence, and the individual conditional expectations that drive it, can be used to extract the
marginal impact of each time period, conditionally, on the response or dependent variable: house prices in
this case. The complexity of the resulting shape of the partial dependency — linear, monotonic, sinusoidal,
spline-like, etc. — is entirely dependent on the flexibility of the underlying model being evaluated. Conceptually,
an individual conditional expectation plot takes a single observation, X;, and for one of the features or
variables, X, simulates the predicted value of that observation under the hypothetical condition that this
observation has the each individual unique value of X found in the entire dataset. By holding all other
features constant, the marginal value of feature s on observation X; can be simulated. This represents an
Individual Conditional Expectation (ICE). Averaging across all X create a measure of partial dependency.
Partial dependency is often illustrated by plotting, which is known as a partial dependency plot (Friedman
2001).

Converting this process to a real estate use for the purpose generating a house price index means valuing a
given property (X;) as if it had each unique value of time of sale (X;) in the dataset. In other words, simulate
the value of a property as if it had sold once in each time period. Do this for all properties in the dataset and
average to get the full partial dependency of sale price on time of sale. A key point here is that any type or

class of model could be used to simulate the series of value predictions; the approach is model agnostic.



An Example

Figure 1 illustrates example plots of an individual condition expectation (left panel) and the overall partial

dependency (right) derived from a random forest model. The left hand panel applies an ICE approach on top

of a random forest model with time as the variable of interest. Each point on the line, 48 in total, represents

the estimated price of the example property at each month over hypothetical four-year time frame. Applying

this same approach to all homes in a dataset (695 in this example), provides the thin black lines in the right

hand panel. Averaging the full set of ICEs results in the partial dependency, shown in thick red line. Note

that the results are expressed in raw dollar values as the partial dependency still needs to be converted to an

Figure 1: Example of ICE and PD Plots
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In conceptualizing how an interpretable machine learning process could map onto the standard approach(es)

for creating house price indexes, it is helpful to abstract the generic process. Broadly, estimating a house

price index involves the following steps:



1) Choose a model and apply it to the data with the purpose of explaining house prices. The chosen

model will need to have a specification that accounts for one or more temporal variables or features in

order to allow the model to capture or express any impacts that time may be having on prices.

Subject the model results to an interpretability method to generate insight into the data generating

process (DGP). For some models this is inherent (median by time period) and for others it is a standard

output (regression beta coefficients). However, the output of many machine learning models will provide

only predicted values. In these cases, a post-model interpretability method will need to be applied.

Take the inherent or derived insights into the DGP — the marginal contributions of each time period

to price — and convert those into an index via one of a standard set of indexes procedures.
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steps to actual processes from a standard hedonic price model example.

House Price Index

More simply, this can be mapped to three decisions or steps in the process. The table below maps the three



Table 1: HPI Process

Step Description

(1) Choose a model Specify a hedonic regression model using control variables and
some configuration of temporal variables

(2) Choose an Extract the coeflicients on the temporal variables as the

interpretability method marginal contribution of each time period toward observed
prices in the data

(3) Choose an indexing Convert these coeflicients to an index via the Laspreyes

method approach

With this framework, we can now extend the creation of house price indexes to any class of model, machine
learning or otherwise, provided that a sufficient interpretability method can be applied to extract or explain
the marginal impact of time period on prices. In the interpretable random forest (IRF) example above (Figure
1), the partial dependence estimates provide the ‘insight into the data generating process’ — the impact of

time on price — that is used to generate the house price index.

Data and Model

In this section, I describe the data used in the empirical tests that follow as well as the particular model
specifications employed. As part of the data discussion, I describe the geographic subsetting employed to

provide local tests as well as the city-wide global analyses.

Data

The data for this study originate from the King County Assessor. All transactions of single family and
townhome properties within the city of Seattle during the January 2010 through December 2016 period
are included. The data are found in the hpiR R package and can be freely downloaded and accessed with
this package. The transactions were filtered to keep only arms-length transactions based on the County’s

instrument, sale reason and warning codes. Additionally, any sale that sold more than once and underwent a



major renovation between sales was removed as these transactions violate the constant quality assumptions

made in the repeat sales models estimated below. Finally, a very small number of outlying observations —

those with sales under $150,000 and over $10,000,000 were removed.

The data includes the following information for all 43,074 transactions remainder after the filtering applied

above:

Table 2:

Data Fields

Field Name Type Example Description

pinx chr ..0007600046 Tax assessor parcel identification number
sale id chr 2011..2621 Unique sale identifier

sale_ price integer 308900 Sale price

sale__date Date 2011-02-22  Date of sale

use__type factor sfr Structure type

area factor 15 Tax assessor defined neighborhood or area
lot__sf integer 5160 Size of lot in square feet

wint binary 1 Is the property waterfront?

bldg grade integer 8 Structure building quality

tot__sf integer 2200 Total finished square feet of the home
beds integer 3 Number of bedrooms

baths numeric 2.5 Number of bathrooms

age integer 100 Age of home

eff age integer 12 Years since major renovation

longitude numeric  -122.30254  Longitude

latitude numeric 47.60391 Latitude

Within the data, there are 4,067 sale-resale pairs. This set of repeat transactions is limited to those which

have at least a one-year span between the two sales. This constraint is applied to avoid potential home flips,

which more often than not violate constant quality assumptions (Steele and Goy 1997; Clapp and Giacotto

1999).



Local Sub-samples

In addition to comparison on performance at the global (city of Seattle) level, I also break the data into
the King County Assessor’s 25 major residential tax assessment zones (Figure 3). Using the tax assessment
zones is likely preferable to common disaggregating regions such as Zip Codes as the tax assessment zones
are relatively balanced in total housing unit counts and purposefully constructed to follow local housing
submarket boundaries. Of the 25 zones, 22 of them have between 1,100 and 2,300 sales over the 7-year period

of this study. The remaining three have 747, 2,792 and 2,827 sales.

Figure 3: Assessment Areas and Sales

SFR Assessment Areas All Sales (43,074) Repeat Sales (4,067)

Models

Three different models are compared in this work; 1) Interpretable random forest (IRF); 2) Hedonic price
(HP); and 3) Repeat sales (RS). The particular model specifications, described in detail below, remain the
same across the global and 25 local geographic areas. In all cases, indexes are estimated at a monthly
frequency. All models and associated metrics and visualizations are computed in the R statistical language

(R Core Team 2019). Details on particular package usage are contained in the discussion on each model.
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Interpretable Random Forest

Model specification for a random forest is similar to those of standard hedonic price models. The dependent
variable (response) is the price of the home (logged in this case) and the independent variables (features) are

those factors that are believed to explain variance in the price:
log(P) = f(S,L,T)

where P is the sale price, S are structural features of the home (including lot size), L are locational features
and T are temporal features. More specifically, the structural features, S include home size (sq.ft.), bedroom
count, bathroom count, building quality and use type (SFR or townhome), locational features, L, are latitude

and longitude and the temporal feature, 7', is the month of sale.

Random forest models also require parameters to control how many trees are grown, how many variables are
considered at each split (“mtry”) and how small each final node of the tree can be. In each case here 500
trees are grown, using an “mtry” of 3 and a minimum node (or leaf) size of 5. The ranger R package is used

to estimate the random forest models (Wright and Ziegler 2017).

Hedonic Model

To keep the comparison as ‘fair’ as possible, the hedonic model uses the same set of independent variables as

the random forest:
log(P) = f(S,L,T)

where P is the sale price, S are structural features — home size, lot size, bedrooms, baths, quality and use
type — of the home, L are locational features — latitude and longitude — and T are temporal features. The
temporal features in the hedonic model are treated as monthly dummy variables instead of a numeric vector
as in the random forest. This allows the hedonic model to identify non-monotonic changes in prices over time

— an ability that would not be possible if time were treated as an integer variable.

Following the advice of Bourassa et al (2016), I specify a robust regression to help minimize the impact of any
outliers or data errors that have avoided filtering. Specifically, I use the robustbase R package to estimate a

MM-estimator with a bi-square redescending score function (Maechler et al 2019).

Repeat Sales

Many implementations of repeat sales models implement Case and Shiller’s (1989) three stage weighted

approach that provides greater weight to sale pairs with shorter holding periods. Work by Steele and Goy
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(1997) suggest that this may be a biasing factor as shorter holds are often less representative of standard
home purchases and resales as the initial sale is more likely to be an opportune buyer. As a result of this and
of work by Bourassa et al (2013), I do not weight direct by holding period length but, again, opt for a robust
regression approach to help moderate any influence from outlying observation and/or changes to quality
between sales that was not caught in the data preparation stage. Here, too, the robustbase R package is
used with an MM-estimate with a bi-square redescending score function (Maechler et al 2019). The standard

formulation of the repeat sales model with a logged dependent variable:
log(yit) — log(yis) = 62(D2it — Dajis) + ... + 67 (Drit — Drjis) + Uit — wis

where y;; is the resale, y;, is the initial sale and the D, ;s are the temporal period dummies, -1 for the period

of the first sale, 1 for the period of the second sale and 0 for all others.

Results

I begin with a visual comparison of indexes (Figure 4) generated from the three models — interpretable
random forest (IRF), hedonic price (HP) and repeat sales (RS). There are three key takeaways from this
visual comparison. First, generally speaking the three models suggest similar price trends; initial evidence
that the IRF approach ‘works’ in the sense that it can track broad market movements commensurate with

established methods.

Second, the IRF method is significantly less volatile period-to-period than the HP and RS approaches. The

extent of this difference and possible reasons for it will be discussed in the section on Volatility below.

Finally, the indexes diverge over the last 12 months of the index. Looking only at a single index it is difficult
to pinpoint the rationale for this difference. Or rather, it is difficult to tell from this cursory visualization
if this is an idiosyncratic difference due to the data in 2016 or if it is a structural difference due to the
IRF’s method of estimation. The fact that the random forest underlying the IRF approach treats time as a
continuous variable and makes binary splits on that variable does suggest that it may produce ‘overly-flat’
estimates at the ends of the time period (both beginning and end) due to how the time periods are aggregated

during the tree growing splits. I’ll explore this hypothesis further below.

12



Figure 4: Comparison of Indexes
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Overall, the indexes show similar time trends, but small variations do exist. Given the difference, is one index
more accuracy than another? I test accuracy as the ability of the index to predict the second sale in a repeat
sale pair. If we take the first sale in a repeat sale pair and adjust it with the index, how close is this adjusted
value to the actual price of the second sale? When measuring the error — or the difference between predicted
and actual second sale — I use log metrics due to their ability to avoid denominator bias and the skewness in

possible error metrics that results (Tofallis 2015). The formula for calculating errors is:

Error; = log(price; preqa) — log(price; actual)

where the price; preq is the time adjusted prediction and price; actuar is the actual sale price of the repeat

13



(second) transaction in the sales pair.

Using repeat sales as our validation criteria does impart some comparative advantage to the repeat sales (RS)
method; however, accuracy is evaluated in two distinct ways that lessen any perceived advantage this may
provide. First, I evaluate the ability of indexes to predict prices out-of-sample using a k-fold approach. In
this case, I use a 10-fold approach, whereby 90% of the sample is used to create an index that is then used to
predict repeat sale prices on the 10% that was held out of the sample. This is done for each 10% random
holdout. By doing so, no evaluation observations (repeat sales) can influence the index used to predict its

second sale price. I refer to errors from this approach as ‘K-Fold’ errors.

The convention k-fold approach can be a bit problematic in a longitudinal setting such as estimating house
price indexes. In any of the 90/10 splits, most of the holdout set is being valued by an index that ‘knows
the future’; or one that was estimated with information well after the holdout observation occurred. This
situation does not well approximate many of the actual use cases of house price indexes which are often most
interested in the fidelity of the index at the most recent point in time (i.e. last month or quarter). Another
approach to out-of-sample measurement is to forward predict, or to predict ‘out-of-time’. As an example, to
measure out-of-time accuracy on a sale-resale pair that sold in period 1 and then again in period 30, we would
use the data from periods 1 to 29 to create an index, then forward-cast the index one period and evaluate the
forward indexed price from period 1 against the subsequent sale in period 30. In other words, we want to
ensure the model is ignorant of the validation point (the period 30 sale) as well as an other future knowledge
of market trends as they are highly correlated within a market area across time. One major downfall of this
approach is that is requires specifying and implementing a forecasting approach, which itself adds additional
uncertainty to the process. The one-period forward predictions are made with the R forecast package,
using a simple exponential smoother with additive errors and no trend or seasonality (type ‘ANN’ (Hyndman

et al 2008)). I refer to these error as ‘Forecast’ errors.

As both accuracy metrics have downfalls, I measure them both with an eye towards understanding if there
are relative differences in performance based on the error metric chosen. I review these implications in the
Discussion section below. Each error metric is evaluated at both the global and local scales. Additionally, the
metrics examine median absolute percentage error (MdAPE) and median percentage error (MdPE). MdAPE

measures the accuracy of the index while MAPE measures its bias.
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Global Accuracy

Global accuracy result are shown in Table 3. For the k-fold metrics, the interpretable random forest approach
shows the best accuracy (MdAPE), though the repeat sales model results in the lowest bias (lower MdPE).
Moving over to forecast evaluation, the hedonic price approach is the clear winner in terms of accuracy, with
the repeat sales model again showing the lowest bias. The IRF model performs relatively poorly in the
forecast approach compared to k-fold. As alluded to above, this could be a direct product of the splitting
processes used in random forest model which is likely to be slow to keep up with rapidly increasing markets

(as experienced over this time frame).

Based on the global accuracy values, neither of the three index methods clearly outperforms the others.
Repeat sales do hold lower biases in this sample, but, as is often the case, at the expensive of some bit of
accuracy. Additionally, the reduced bias of the repeat sales model could also be a direct result of using repeat

sales as the validation set.

Table 3: Global Accuracy

Model MAJAPE (k-fold) MdAPE (k-fold) MAJAPE (forecast) MAPE (forecast)
Repeat Sales 0.0770 -0.0019 0.0806 -0.0064
Hedonic Price 0.0796 -0.0283 0.0781 -0.0343
Interpretable Random Forest 0.0756 -0.0275 0.0853 -0.0588

Local Accuracy

Examining the local accuracy numbers shows some marked change from the Global figures (Table 4). The
much smaller sample sizes in the assessment zones creates a considerable decrease in accuracy (errors +70%)
for the RS model across both the k-fold and forecast metrics. Accuracy numbers for the HP and IRF also
increased, but very slightly so. In terms of accuracy, the IRF approach remains the most accurate in the
K-Fold scenario, while hedonic pricing again dominates in a forecasting situation. Biases remain high in the
IRF approach. Despite the large degradation in accuracy, the RS model remains unbiased in the K-Fold, but

not in the forecast evaluation framework.
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Table 4: Local Accuracy

Model MAJAPE (k-fold) MdAPE (k-fold) MdJAPE (forecast) MAPE (forecast)
Repeat Sales 0.1367 -0.0028 0.1513 -0.0477
Hedonic Price 0.0846 -0.0137 0.0821 -0.0328
Interpretable Random Forest 0.0812 -0.0410 0.0961 -0.0823

From the global and local accuracy analyses, three general findings result:

e The move from global to local models did not improve accuracy in any model, and greatly harmed the
repeat sales models.

o Interpretable random forest models are more accurate than hedonic pricing in k-fold, but this relationship
switches in a forecast scenario.

o All models are either unbiased (repeat sales) or show bias on the low end — are under-predicting second

sale prices

I spend the remainder of this paper exploring each of these findings through additional measures of model

performance.

Volatility

Volatility measures the variation in the index value from period to period. While there is no ideal minimal
level of volatility that is desired; no volatility at all signifies a perfectly flat index which is not desirable if
there are market movements. In general lower volatility is usually preferred to higher. High volatility may be
a sign of over-fitting from the underlying model, or, as is often the case in areas with few sales, simply a

product of small sample sizes.

What is desirable is an index that tracks the market without fluctuating widely above and below the actual
trend each period. In this paper, volatility is measured as the standard deviations of period-to-period changes

in a rolling four-period time span.
V = sd(Dy 141,4+2) where D = indexy, — index)_1

This is an appealing metric as consistent, monotonic changes over a four month span — the three measures of

period changes — will produce very low standard deviations. On the contrary, wildly fluctuating indexes with
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irregular directionally movements will produce high volatility measures.

Using the volatility metric defined above, we can measure the differences in ‘smoothness’ of the three
approaches (Figure 5). While the repeat sales and hedonic price methods have differences in their period to
period movements, overall their levels of volatility are similar. The volatility of the IRF model is 1/5 to 1/6

that of the others, confirming what we saw visually in Figure 4.

Figure 5: Global Volatility
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Computing volatility for each of the 25 local areas (assessment zones) shows a much wider differential in
volatility among the methods (Figure 6). Moving to local models creates vastly greater volatility for the
repeat sales model. The smaller sample size has a much greater impact on the RS model as this approach
already is an inefficient use of data, as it does not use all transactions. The HP model shows about 3 times
the volatility at the local level — on average — than globally. For the IRF model, the local models are just as
smooth as the global approach, a marked contrast from the other two methods. Additionally, the spread of

index values for the local areas are much tighter for the IRF than the others.
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Figure 6: Local Volatility
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The final metric, revision, is the amount that previous index values change as a new period is added to the
index. For example, imagine we have 30 periods worth of data and we create an index with this data and the
5th period in our index is estimated at 110. We then receive data for period 31, we re-calculate the entire
index and the index value for period 5 is revised up to 111 due to changes in our model’s coefficients as a

result of the additional observations. This is a revision of 1.

Within this work I measure period-wise revision as the individual mean of the revisions for each period in the

index as it expands out to cover the entire time period. The revision for period k is:
Ry, =3 (K — Kj1)/j
where j is the new index being generated after each addition of data.

In the index analyzed below, I begin each with a 24-month period of training data to create the first index. I
then add in data from period 25 and recalculate the index, measuring the revision for periods 1 to 24. The
same is then done for period 26 (measuring revision for periods 1 to 25) and on up through period 84. There

is no revision number for period 84 as it is only estimated once.
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Revisions are particularly interesting and worthwhile metric for house price use cases that are continuously
updating an index over time. Large and consistent re-statements of prior index periods can be problematic,
especially if the indexes are used to back financial instruments (Deng and Quigley 2008). For indexes used to
make adjustments to training data for automated valuation models and other appraisal purposes, systematic
revisions in same direction — sustained downward adjustments over time, for example — can result in biased

property valuation estimates and other propagated errors.

Figure 7 shows the mean revision amount across the time period, by each model for the global models. There
are three key takeaways here: 1) The repeat sales model has higher revisions in the earlier periods (final
period aside) and these revisions are usually downward; 2) The hedonic model has almost no revisions over
time; and 3) The interpretable random forest approach suffers from the highest revisions in the later periods,

all of which are upwards.

The findings regarding the stability of the hedonic model and the tendency for downward adjustments from
the repeat sales approach, echo those of previous work (Clapp and Giacotto 1999; Clapham et al 2006). The
later period adjustment for the IRF model mimic earlier findings that suggest that the random forest tends

to lag in periods of high price growth (the latter part of the study period).

Figure 7: Mean Revision by Period (Global)
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To further explore the relationship between overall price movements and adjustments, Figure 8 plots the
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mean revision in each period (y-axis) against the percent change in prices during that period. For the repeat
sales model we see slightly greater downwards revisions in periods of high appreciation, though the trend
is rather weak. This may suggest that ‘flip’ type sales are a greater cause of revision than the underlying

market, similar to rationale provided by Clapp and Giacotto (1999).

As there are no real revisions for the hedonic model (middle panel) we see no noteworthy trends here. At
odds with repeat sales, the IRF approach shows significant positive correlation between revisions and the
underlying price changes during the period. Again, this supports the idea that the random forest lags during

period of high appreciation, only to ‘catch up’ later via upward adjustments.

Figure 8: Revision vs Price Movement (Global)
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Making the same comparisons — revision vs period index change — for the local indexes reveals a number of
findings. One note for interpreting these plots (Figure 9): the X-axes vary between plots in order to fully

capture the differences in volatility between the different models, the Y-axes are stable.

First, the hedonic approach (middle panel) remains very stable even with the greatly reduced sample sizes in
the local models. The repeat sales approach shows a much more pronounced negative relationship between
price movements and revisions at the local scale. In other words, the higher the underlying price movement,
the greater the downward revisions that occur over time. Again, for the IRF model the opposite is true.

Higher price appreciation means higher upward revisions. Nearly all revisions to the local IRF models are
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upwards, but this fact should be not be interpreted as suggesting IRF doesn’t generally adjust downwards.
Rather, this study period is one of either flat or increasing home prices (as evidenced by the X-axis in the
right hand panel) and the lack of downward revisions is likely a result of the the sample period and the

method itself.

Figure 9: Revision vs Price Movement (Local)
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Discussion

This paper introduces a new approach to estimating a house price index through the use of an interpretable
machine learning model. More specifically, it applies a model agnostic interpretability method — partial
dependency — to an inherently opaque machine learning technique — a random forest. From this combination
we are able to extract the change in prices over time, holding quality constant. This approach is particularly
well suited conceptually for a house price index as it values individual properties once each period to create an
index; essentially the purpose of a house price index. The index itself tracks very similarly to those produced
by more traditional repeat sales and hedonic price approaches supporting the viability of this approach

empirically as well.

The interpretable random forest (IRF) is then compared against the two traditional methods for measures of
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accuracy, volatility and revision; both globally and across 25 smaller assessment regions in the city of Seattle.

There are a number of major findings.

In terms of accuracy at the global scale, all three models are relatively close with IRF the most accurate in a
k-fold validation and the hedonic model in a forecast environment. The repeat sales model remains the most
un-biased, though this may be a product of repeat sales being used as the accuracy validation set. Additional
research is required to develop a more standardized approach for evaluating house price index accuracy. At
the local scale, both the IRF and hedonic price methods again show solid accuracy performance in contrast

to the repeat sales models which degrade considerably at the local level.

Index smoothness is where the IRF method proves particularly adept. Volatility for the IRF model ranges
from 1/6 of the others at the global to upwards of 1/75th at the local scale. Given that the accuracy metrics
for the IRF are comparable, in terms of producing a smooth index with high fidelity to the market movements,

the IRF approach offers a marked improvement.

Like the repeat sales approach, the IRF method suffers from revision as new data is added each period. The
scale of the revisions are slightly greater than the repeat sales at a global scale, though considerably smaller,
relatively, when the models are run locally. Notably, the repeat sales model revises down during periods
of appreciation while the IRF revises up during these periods of price growth. For the repeat sales this is
generally caused by data issues (short holds lacking constant quality Steele and Goy (1997)), while for the
IRF model it is likely a derivative of the random forest algorithm itself. The revisions to price movement

correlations are amplified when moving from the global to the local model.

Overall, from an accuracy and a volatility perspective the IRF model is a viable replacement for the repeat
sales model and is competitive with a hedonic price approach depending on whether or not accuracy or
volatility are the preferred metrics. A deficiency of the IRF approach is the systematic, positively correlated
revisions during periods of rapid market movements; it is here that the ‘smoothness’ of the resulting IRF

models becomes a liability. More work it needed in this direction.

More broadly, this work highlights the viability of an inherently uninterpretable machine learning model
(black box) matched with a model agnostic interpretability method to derive house price indexes. While this
work paired random forest with a partial dependency analysis, there is no reason other models — such as a
neural network — could not be combined with other interpretability methods — such as Shapley values. As
discussed in the Conceptual Framework section, all that is needed to create a house price index is a model of
house prices, a method for understanding the data generating process in respect to the impact of time on

price and an indexing method. The traditional repeat sales and hedonic price approaches are entrenched
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mostly out of convenience — they offer directly interpretable beta coefficients — and not, necessarily, out of
any underlying superiority. As machine learning approaches and their interpretability methods continue to
develop, the status quo here will likely be continually challenged. This is the first work to offer both a general
framework for conceptualizing house price indexes in a machine learning context as well as offer a direct test

of one approach across a number of important metrics — accuracy, volatility and revision.

Reproducibility and Software

This work is completely reproducible. All raw data, code and general instructions to exactly recreate the
analyses above is found at https://www.github.com/anonymousreauthor/irf _house_ price_index! All code is
written in the R statistical language. In addition to the hpiR package, which includes the custom functions
for the IRF models and the wrapper functions that make for easy computation of accuracy, volatility and
revision figures this work also directly uses the following R packages: caret(Kuhn 2019), dplyr(Wickham et
al 2019), forecast(Hyndman et al 2019), ggplot(Wickham 2016), imputeTS(Moritz and Bartz-Beielstein
2017), knitr(Xie 2019), lubridate(Grolemund and Wickham 2011), pdp(Greenwell 2017), purrr(Henry and
Wickham 2019), ranger(Wright and Ziegler 2017), robustbase(Maechler et al 2019), tidyr(Wickham and
Henry 2019) and zoo(Zeileis and Grothendieck 2005).

INOTE to reviewers: This will be switched to my actual Github Repository after blind peer review.
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